Part I of this two-part post reviewed most of the considerations that must be understood in evaluating analyses of wind power.
Part II completes this analysis by focusing on one of the most important considerations in the wind utility debate, wind’s capacity value. To this end, I review a paper by Gross et al, which is relied on by Komanoff, and conveniently provides an opportunity for the review of a second paper.
Wind’s Capacity Value
Komanoff uses a flawed analogy by claiming that a backup quarterback contributes value to a team even if he never plays. First, the concept of “never playing” is arguably a reasonable notion with respect to industrial wind power. Second, the analogy applies more correctly to operating reserves, which are needed to fill in for the other generation means if, and when, needed.…
Is the introduction of industrial- or utility-scale wind power into our electricity systems good public policy?
This political economy question (wind power is government dependent, or it would only be a market question) hinges to a large degree on operations research, or engineering. And it is here that a hotly contested debate is going on, for it is an open question about how much wind power really displaces fossil fuels–the raison d’etre of wind subsidies in the first place.
This two-part series evaluates some of the latest approaches and considerations in this debate. One important paper published in 2009 by Charles Komanoff sees wind-for-fossil-fuel displacement as robust and is currently being cited by wind proponents in Maine. Another paper in my review is a study by Gross et al, which is relied on by Komanoff.…
Most analyses and reviews of utility-scale, highly intermittent new renewables, especially wind power which will be the focus here, are lacking in perspective. This makes marginal aspects appear to have significance out of proportion to the very little value they represent.
A few examples are:
…· A focus on the energy contribution (MWh) from wind power leads to error in assessing the contribution to electricity costs, reliability, impact on fossil fuel consumption and CO2 emissions, transmission needs and the operation of an electricity system.
· The possibility of some improvements in wind forecasting. Given the current state of weather forecasting in general, it seems difficult to believe that wind can be forecast for short time intervals, say 24 hours in advance. In any event, even if such forecasting was possible, it does not change the need for balancing generation plants to be ramped frequently to mirror wind conditions.