Is the introduction of industrial- or utility-scale wind power into our electricity systems good public policy?
This political economy question (wind power is government dependent, or it would only be a market question) hinges to a large degree on operations research, or engineering. And it is here that a hotly contested debate is going on, for it is an open question about how much wind power really displaces fossil fuels–the raison d’etre of wind subsidies in the first place.
This two-part series evaluates some of the latest approaches and considerations in this debate. One important paper published in 2009 by Charles Komanoff sees wind-for-fossil-fuel displacement as robust and is currently being cited by wind proponents in Maine. Another paper in my review is a study by Gross et al, which is relied on by Komanoff.…
Continue ReadingAs more state and other interested parties line-up to contest the EPA’s Endangerment Finding, the EPA is becoming creative in trying to come up with other strategies to justify restricting carbon dioxide (and other greenhouse gas) emissions.
One new strategy is to use the Clean Water Act to justify curbing CO2 emissions because they lead to ocean acidification (an impact which itself seems to be overblown). Another is to explore seeking greenhouse gas emissions controls at a local level, under the guise that concentrated local CO2 emissions (i.e. in cities) change the local environment in such a way as to elevate human mortality there.
Never mind that such an impact will never be detectable.
My colleague Pat Michaels refers to this as the EPA’s “whack-a-mole” strategy—while effort is concentrated on trying to beat down one of its pesky and ill-founded CO2-regulating proposals, the EPA pops up another and another and another.…
Continue ReadingWhen it comes to power, density is the key. Energy density. The reason that solar power, wind power, and ethanol are so expensive is that they are derived from very diffuse energy sources. It takes a lot of energy collectors such as solar cells, wind turbines, or corn stalks covering many square miles of land to produce the same amount of power that traditional coal, natural gas, or nuclear plants can on just a few acres.
Each of these alternative energy sources is based on mature technology. Agriculture and fermentation have their roots in prehistory, windmills date back at least to 65 B.C., the photovoltaic effect was discovered in 1839. Yet nowhere in the world are these technologies serving as primary energy sources without significant government subsidies. While incremental improvements can be expected, what is needed for them to become viable is an order of magnitude increase in productivity.…
Continue Reading