

Better Buildings Residential Network Peer Exchange Call Series:

Electrification – What Does It Mean for Energy Efficiency?

December 12, 2019

Agenda and Ground Rules

- Agenda Review and Ground Rules
- Opening Poll
- Residential Network Overview and Upcoming Call Schedule
- Featured Speakers:
 - Jessica Shipley, Regulatory Assistance Project
 - Emily Levin, Vermont Energy Investment Corporation
 - Scott Blunk, Sacramento Municipal Utility District
- Open Discussion
- Closing Poll and Announcements

Ground Rules:

- 1. Sales of services and commercial messages are not appropriate during Peer Exchange Calls.
- 2. Calls are a safe place for discussion; please do not attribute information to individuals on the call.

The views expressed by speakers are their own, and do not reflect those of the Dept. of Energy.

Better Buildings Residential Network

Join the Network

Member Benefits:

- Recognition in media and publications
- Speaking opportunities
- Updates on latest trends
- Voluntary member initiatives
- One-on-One brainstorming conversations

Commitment:

Members only need to provide one number: their organization's number of residential energy upgrades per year, or equivalent.

Upcoming Calls (2nd & 4th Thursdays):

- Jan. 9: Known Unknowns: Key Energy Efficiency Trends in the New Year
- Jan. 23: Going Deep What Drives Deep Energy Retrofits?
- Feb. 13: Comfort The Biggest Driver of Residential Energy Efficiency

Peer Exchange Call summaries are posted on the Better Buildings website a few weeks after the call For more information or to join, for no cost, email bbresidentialnetwork@ee.doe.gov, or go to energy.gov/eere/bbrn & click Join

Jessica Shipley
Regulatory Assistance Project

12 December 2019

Energy Efficiency and Beneficial Electrification

US DOE Better Buildings Residential Network

Jessica Shipley

Senior Associate

Regulatory Assistance Project (RAP)®

Portland, Oregon

United States

+1 503 816 2639

jshipley@raponline.org raponline.org

Fuel Choice – 1990

- Wind and solar were not viable economic resources
- Best heat pumps had a coefficient of performance of about 2
- Heat pump water heaters were not commonly available
- Best natural gas generating plants had about 42% conversion efficiency

Fuel Choice Today

- Wind and solar 2 3 ¢/kWh
- Heat Pump COPs are better
- New gas generation is as much as 62% efficient,
- Modern technology enables load control

What's The Opportunity?

Source: Steinberg, D., Bielen, D., Eichman, J., Eurek, K., Logan, J., Mai, T., et al. (2017). Electrification & Decarbonization: Exploring U.S. Energy Use and Greenhouse Gas Emissions in Scenarios with Widespread Electrification and Power Sector Decarbonization, using data from Energy Information Administration 2009 Residential Energy Consumption Survey.

Innovative & Efficient End Uses – Electrification Is Underway

Regulatory Assistance Project (RAP)[®]

Beneficial Electrification: Ensuring Electrification in the Public Interest

- 6 principles to ensure beneficial to consumers, environment, grid
- Papers for EVs, water heating, and space heating

https://www.raponline.org/BE

Electric Space Heating Technologies We Looked At

- Air-source heat pumps
 - Ducted or ductless
 - Standard and cold-climate
- Air-source heat pumps with back-up or storage heating ("dual fuel")
- Ground-source heat pumps
- Electric resistance heating with storage

Electric resistance heater photo: Steffes Corp.

Beneficial Electrification (BE) - Three Conditions

1. Saves Customers Money Over Long-Term

2. Reduces Environmental Impacts

3. Enables Better Grid Management

Consumer Economics: Key Factors

- Efficiency of space heating options
- Building type and its thermal efficiency
- Space cooling desired?
- Incremental cost of installation
- Cost of fuel

Current Economics of Converting Existing Oil Furnaces to Air Source Heat Pumps

Annual Fuel Cost Savings (or Loss) by Switching to Air Source Heat Pump From Oil Furnace

Source: Compiled with data from American Council for an Energy-Efficient Economy and US Energy Information Administration.

Future Economics of Converting Existing Gas Furnaces to Air Source Heat Pumps

Source: Jadun, P., McMillan, C., Steinberg, D., Muratori, M., Vimmerstedt, L., and Mai, T. (2017). Electrification Futures Study: End-use Electric Technology Cost and Performance Projections Through 2050

Emissions Impacts: The Power Sector Fuel Mix Is Changing

MISO Generation Portfolio Evolution

http://www.misomatters.org/2017/03/3-electricity-industry-issues-we-are-watching-in-2017/

Emissions

Oil Furnace

Heat Pump (ENERGY STAR®)

513 gallons oil/year

22 lb CO₂/Gallon

11,300 lb CO₂/year

Emissions

Oil Furnace

Heat Pump (ENERGY STAR®)

513 gallons oil/year

22 lb CO₂/Gallon

11,300 lb CO₂/year

7,754 kWh/year

50% Gas; 50% Coal 1,400 lb CO₂/MWh

10,855 lb CO₂/year

As the Grid Gets Cleaner, Electric Options Become More Beneficial

Grid Benefits: Avoid High-Cost Hours

- Top 1% of hours = 9% of total spending
- Top 10% of hours = 26% of total spending

Source: Rhode Island Power Sector Transformation, Phase One Report to Governor Gina M. Raimondo (November 2017)

Grid Benefits: Boost Load Flexibility

Source: Brattle, 2019. https://brattlefiles.blob.core.windows.net/files/16639 national potential for load flexibility - final.pdf

BE and EE: Put Efficiency First

More Efficient End Uses

New EE Technologies Are Emerging

- Sound waves "shake" moisture out of clothes
- 80% reduction in electricity

 Induction cooktops 90% efficient, compared to 55% for electric coils and 50% for gas

Standard & Poor's Utility Practice: "Expect little net load growth going forward."

Today's EE/ Demand Side Management (DSM) "Eddy"

Capacity Resources
Renewables & DERs
Fossil Resources
Ancillary Services
Utility EE/DSM

Markets: DERs & "Metered EE"

- "Law of Big Numbers" can make EE work like any other DER
- Value (and compensate) EE's grid benefits, flexibility, nonenergy benefits, etc.

Savings highly dependent on time and season

Building Codes

- Importance of thermal efficiency
- Move toward requiring high-efficiency electric space heating and cooling
- New residential structures "all electric ready"?

Need to Re-Imagine Today's Energy Efficiency

- Revise state Energy Efficiency Resource Standards to avoid kWh-consumption limits
 - BE decreases total energy use, but increases kWh
- Remove fuel-switching prohibitions for BE
- Remove load-building prohibitions for BE
- Enable "EE as a DER" using analytics, so it can be a genuine market resource

Good News from EPA for EE

https://www.epa.gov/statelocalenergy/estimating-health-benefits-kilowatt-hour-energy-efficiency-and-renewable-energy

"We must use <u>less</u> electricity where we can, so we can use <u>more</u> where we should."

-- Former EPRI CEO Steve Specker

About RAP

The Regulatory Assistance Project (RAP)® is an independent, non-partisan, non-governmental organization dedicated to accelerating the transition to a clean, reliable, and efficient energy future.

Learn more about our work at raponline.org

Contact Jessica at: jshipley@raponline.org

Emily Levin
Vermont Energy Investment Corporation

December 12, 2019

BBRN Webinar: Electrification and Energy Efficiency

Efficiency & Electrification: Steps to Success in Leading States

Emily Levin VEIC

About VEIC

- Nonprofit founded in 1986
- 300+ employees
- Locations: DC, NY, OH, VT
- Design and deliver programs and policies nationwide:
 - Energy efficiency
 - Clean transportation
 - Building electrification
 - Renewable energy

- Our customers:
 - Utilities
 - Government
 - Foundations
 - Environmental & consumer groups
 - Business

Deploying EE and Electrification Strategically: Steps to Success in Leading States

Step 1: Continue EE as Foundation of Clean

Energy Transition

Vermont's Pathway: Efficiency, Electrification, and Renewables

Step 2: Make Efficiency Smarter

Goal: Flatten Vermont's Growing Duck through Time-Targeted EE

Savings Curve for LEDs on High Stress Cold Days

Savings Curve for High Efficiency Pool Pumps on High Stress Hot Days

Step 3: Expand Scope of EE Programs to Include Electrification and **Flexibility**

Hawaii Energy

Clean Energy Technologies

Financial Incentives via Rebates

- EV Charging Station Incentives
- Energy Storage Incentives
- Smart Building Incentives

Technical Advising

- Energy and Project Advisory Services
- Metering and Monitoring / Data Analytics

Accessibility & Affordability

Customer Education to change behavior

"Going Deeper" on ALICE® families and small businesss

- ALICE® family focused programs
- Incentives for specific communities

Market Transformation & Economic Development

Growing Workforce Capacity

Influencing the Supply Chain

Energy Codes and Standards

Longer term Strategic Planning that is Data-driven

- Clean Energy Innovation Hub

Excerpt from Hawai'i Energy PY 2019-2021 Plan

15

MA Clean Energy Bill Expanded EE Scope

- MA Legislature passed clean energy bill on July 31, 2018
- Key provisions of H.4857, An Act to Advance Clean Energy:
 - Replaces "electric" with "energy" in EE statute
 - Adds energy storage, active demand management, and strategic electrification as eligible under EE programs
 - Adds programs that result in customers switching to renewable energy sources or other clean energy technologies to EE plans
 - Broadens cost-effectiveness screening to ensure that programs "obtain energy savings and other benefits with value greater than the costs of the program" rather than energy savings and system benefits
 - Requires cost-effectiveness at sector level rather than measure level

Efficiency Vermont Future Vision

Redefined Efficiency

Step 4: Get Started with a Targeted Approach

At current fuel prices, it often makes sense to target:

Existing homes that currently heat with electric resistance,

oil, or propane

New construction: Net zero program tiers and stretch codes to promote construction integrating heat pumps with high-performance building shells

Efficiency Vermont: Zero Energy

Modular Home

Mass Save: Higher Incentives for Fuel Switching

Fuel Optimization Rebates					
Primary Fuel Type	Delivery Method	Efficieny Requirements	Additional Requirements	Rebate Amount ¹	
Oil or Propane	Ducted, Mixed- Ducted	AHRI SEER≥15, HSPF≥9	Integrated Controls ² required	\$1,000 per 4	
	Non- Ducted	Must be on the NEEP ³ Qualified Product List. Visit ashp.NEEP.org	unless central heating system is removed ⁴ . Refer to qualified product list MassSave.com/ICQPL	\$1,600 per ton	

Mass Save rebates for mini-split heat pumps: https://www.masssave.com/en/saving/residentialrebates/electric-heating-and-cooling/ Much higher "fuel optimization" rebate for fuel switching from oil or propane (\$150-350 per ton for standard install)

Integrated controls required unless central heating system is removed

Step 5: Break Down Silos

 Integrate and coordinate delivery of efficiency, demand flexibility, electrification programs to break down program silos

Integration Example: Electrification with Controls

- Pilot testing gridinteractive water heaters as a virtual thermal battery
- Collaboration between WEC and Efficiency Vermont

Integration Example: Weatherization + Heat Pumps

- Vermont Zero Energy Now Pilot:
 - Wx + heat pumps + PV
 - 50-80% reduction in total energy use
- NYSERDA Heat Pump Ready Pilot:
 - Demonstrate affordable standard packages of whole house load reduction measures (air sealing, insulation, duct repair/sealing, low E windows, smart controls)
 - Create a viable and innovative service model for contractors

Zero Energy Now 2016 Summary Statistics

Participants	22 Vermont existing homeowners		
Customer investments	\$1.2 million (split relatively evenly between efficiency and solar PV)		
Median total project cost	\$44,739 (ranging between \$22,000 and \$170,000)		
INDI CUSTOMAL DIOIACI COST	\$31,090 (after incentives from Zero Energy Now, Efficiency Vermont and 30% Federal tax credit)		
Median energy cost savings	\$3,692/year		
	95 MMBtu (60 MMBtu from efficiency and 31 MMBtu from solar PV) from 120 MMBtu pre- to 25 MMBtu post-improvement		
Customer return on investment	11.9%		

http://bppa-vt.org/page-1737726

Step 6: Set Next-Generation Goals

- Align EE program goals (and utility performance incentives)
 with state policy goals:
 - Peak demand reduction
 - Fuel-neutral energy savings or GHG reduction
 - Market transformation indicators
 - Energy or GHG savings for low-income customers or other target groups

Massachusetts: EE Program Metrics in 2019-2020 Period

Old Goal	New Goal	Advantage				
Lifetime kWh savings	Lifetime MMBtu savings	 Converts electric, oil, and propane savings to common units Encourages energy optimization by providing holistic view of tradeoffs such as electrification 				
NA	Peak kW savings	 Measures savings from both active and passive demand reduction 				

New York: Incenting Key Outcomes

- Under REV, New York seeks to:
 - Transition from cost-of-service to performance-based ratemaking
 - Provide incentives (earning adjustment mechanisms or EAMs) to utilities for achieving desired outcomes
- New Efficiency New York plan includes both EE and heat pump adoption as key components of statewide 185 TBtu by 2025 savings target

Earnings Adjustment Mechanisms : New Upside Performance Incentives in Niagara Mohawk Power Co. Joint Proposal

nationalgrid

EAM Category	Metrics	Measurement	Drivers		
System Efficiency	Peak Reduction	NYCA-coincident peak load	Demand response, Storage, Peak-focused EE, DG		
	DER Utilization	Sum of annualized MWh for incremental load-reducing DERs	Interconnection, VDER, VTOU, off- peak EV Charging, heat electrification, VVO/CVR		
	Incremental EE	Incremental MWh EE Savings			
Energy	LED StreetLighting	LED SL conversions	ETIP, incremental NMPC administered EE, EE financing, E- Commerce Platform, LED Street Lighting, Project Juniper, NY SERDA coordination, 3 rd party coordination		
Efficiency	Resi Energy Intensity	% decrease in MWh/customer			
	C&I Energy Intensity	% decrease in MWh/customer			
	Meeting SIR standards is threshold for earning		Developer cost sharing; Developer opportunity to construct upgrades;		
Interconnection	Developer Satisfaction		online interconnection portal		
Carbon Reduction	Beneficial Electrification	MTCO2 reduced from incremental heat pumps and EVs	Electric heat initiative, EV charging & marketing, rate design, Juniper		

Hawai'i and Vermont: Evolution of Third-Party Administrators

GHG Reduction

- Hawai'i now tracking GHG tons and barrels of oil saved based on HECO generation composition
- Efficiency Vermont will be proposing as part of next 3-year plan

Grid Service-Ready Technologies Installed / Customers Served

- Hawai'i Energy has performance incentive worth 5% of overall award
- Efficiency Vermont will be proposing as part of next 3-year plan

To Recap

- ✓ Continue EE as foundation of clean energy transition
- ✓ Make EE smarter with data-driven insights and time & location targeting
- Expand EE program scopes to include electrification and flexibility
- ✓ Get started with targeted approaches
- ✓ Break down program silos to coordinate efficiency, electrification, and flexibility
- ✓ Set next-generation performance metrics and incentives

Emily Levin

Managing Consultant, Energy Programs 802-540-7694 elevin@veic.org Thank you!

Scott Blunk
Sacramento Municipal Utility District

Sacramento Municipal Utility District (SMUD)

IRP plan to achieve net zero carbon

Path to Electrification Programs

- 1) Calculate the carbon equivalence between electricity and gas
 - Use to claim electrical savings from electrification
- 2) Calculate the monetary value of electrification to the utility
 - Hint, it is much more than net revenue times new load
 - With this, set incentives
- 3) Calculate the hourly long term marginal emissions
 - Use to change the metric used to manage EE programs

Along the Way, Defined or Redefine some Terms

- "Energy" is often treated as a synonym for Electricity
- "A <u>clean energy revolution</u> is taking place across America, underscored by the steady expansion of the U.S. renewable energy sector." according to the DOE
- "Clean energy revolution" is **bogus** there is only a "clean **electricity** revolution" happening

What is Energy Efficiency?

SMUD's Planned Carbon Reduction in Buildings

Electrification Efficiency and Electric Efficiency is Temporal

Carbon Savings

Programmatic
Carbon is the
lifetime long
term marginal
emission carbon
reduction

Measure Installed in 2020	Carbon Reduction (tonnes)			
Whole House Fan	1.47			
Home Energy Report	0.14			
AC - 16 SEER	3.28			
HPWH	11.00			
Heat Pump HVAC	22.81			
Induction	0.56			

Measure Installed in 2040

Whole House Fan

Home Energy Report

AC - 16 SEER

HPWH

Heat Pump HVAC

Induction

Carbon Reduction
(tonnes)

0.49

0.03

0.64

12.97

Heat Pump HVAC

13.96

1.19

Grid issues with building electrification

Off peak

 Most electrification is not at system peak

Grid utilization

Electrification improves utilization of the grid by 5%

On peak

 Furnace electrification yields a more efficient AC thus reducing summer peak

SMUD Electrification Programs

		Total Possible					
	Launch Date	Incentive	Base Incentive	HP-HVAC	HPWH	Induction	Bonus
Single Family New Construction	March 2018	\$7,000	\$4,000	✓	✓	\$1,000	\$2,000
Multifamily New Construction	March 2018	\$1,750	\$1,250	✓	✓	\$500	х
Single Family Existing	May 2018	\$10,500	n/a	\$4,500	\$3,000	\$500	\$2,500 ¹
HPWH Equipment Efficiency	June 2018	\$3,000	\$2,000	n/a	✓	n/a	\$1,0002
Multifamily Existing	December 2018	\$2,500	n/a	\$1,000	\$1,000	\$500	х
HPWH Direct Install Program	3 nd Quarter 2019	\$3,000	n/a	n/a	✓	n/a	х
HP-HVAC Equipment Efficiency	3 rd Quarter 2019	\$4,500	\$1,500	\$2,500	n/a	n/a	\$500 ³

Explore the Residential Program Solution Center

Resources to help improve your program and reach energy efficiency targets:

- Handbooks explain why and how to implement specific stages of a program.
- Quick Answers provide answers and resources for common questions.
- Proven Practices posts include lessons learned, examples, and helpful tips from successful programs.
- Technology Solutions NEW! present resources on advanced technologies, HVAC & Heat Pump Water Heaters, including installation guidance, marketing strategies, & potential savings.

https://rpsc.energy.gov

Thank You!

Follow us to plug into the latest Better Buildings news and updates!

Better Buildings Twitter with #BBResNet

Better Buildings LinkedIn

Office of Energy Efficiency and Renewable Energy Facebook

Please send any follow-up questions or future call topic ideas to:

bbresidentialnetwork@ee.doe.gov

